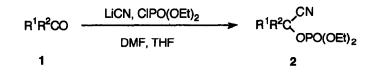
A Convenient and Improved Preparation of Cyano Phosphates

Irene Micó and Carmen Nájera*

Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain

(Received in UK 15 March 1993)

Abstract: Cyano phosphates derived from aldehydes or ketones are prepared in good yields using lithium cyanide in DMF and diethyl chlorophosphate as phosphorylating agent.


Introduction

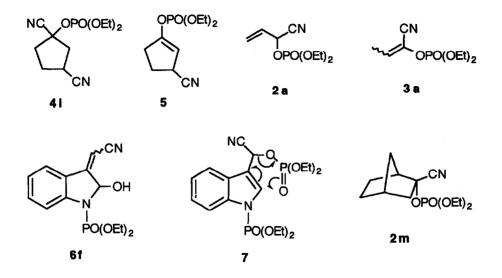
Cyanohydrin diethyl phosphates are versatile intermediates in synthetic organic chemistry¹ specially: (a) in the preparation of saturated² and α,β -unsaturated ³ nitriles from carbonyl compounds by reductive elimination of the phosphate group, (b) for the regiospecific Friedel-Crafts type arylation of aromatic compounds⁴, (c) in the synthesis of γ -hydroxy α,β -unsaturated nitriles ^{4b,5} and β -cyano α,β -unsaturated ketones⁵ by [3,3]-sigmatropic rearrangement of α,β -unsaturated cyano phosphates, (d) as acyl anion equivalents⁶ in the case of aldehydes derivatives, and (e) in the synthesis of indole derivatives⁷. We were interested in the synthesis of saturated nitriles from saturated ketones by reduction of the corresponding cyano phosphates with samarium iodide^{2b}. The general method described for the preparation of diethylphosphoric esters of cyanohydrins is the treatment of carbonyl compounds either with a three-fold excess of lithium cyanide and O,O'-diethyl phosphorocyanidate [(EtO)₂P(O)CN, DEPC]¹⁻⁷, or with DEPC in the presence of a catalytic amount of lithium diisopropylamide⁸. We have found a more simple and cheaper way to prepare cyano phosphates using as reagents lithium cyanide and diethyl chlorophosphate.

Results and Discussion

The reaction of carbonyl compounds 1 with a slight excess of a solution of lithium cyanide (1.5 eq) in N,Ndimethylformamide⁹ and diethyl chlorophosphate (1.2 eq) in THF at room temperature gave cyanohydrin diethyl phosphates **2b-c**, **2g**, **2h** and **2j-m** in good yields (Scheme 1 and Table 1).

The process was monitorized by GLC and took place in less than one hour and with similar yields than in the DEPC method ¹⁻⁷, and compounds 2 were obtained in most cases as crude products in >93% of purity (GLC and 300MHz ¹H-NMR). In the case of α , β -unsaturated carbonyl compounds such as (*E*)-crotonaldehyde (1b) and methyl vinyl ketone (1g) only the corresponding 1,2-addition products were formed. However, I. MICO and C. NAJERA

Scheme 1


Table 1. Synthesis of Cyano Phosphates 2-4 and 6.

Carbonyl compound			Reaction	Product		
no.	R1	R ²	timeª	no.	yield (%) ^b	bp(°C)∘
1 a	CH ₂ =CH	н	10 min	3a d	66	90
1b	(E)-MeCH=CH	н	10 min	2b	85	10 5 e
1 c	<i>t-</i> Bu	н	15 min	2 c	85	100
1 d	Ph	н	30 min	2d	88	135ſ
1 e	PhCH ₂	н	1 h	2e	93	1 60
1 f	3-indolyl	н	2 hg.h	6f ⁱ	72	_j,k
1 g	CH ₂ =CH	Me	10 mins	2 g	81	901
1 h	Et	Et	10 mins	2h	67	110
1i	-(CH ₂ CH ₂ CH=CH)-		15 min	4i m	40	160n
1j	-(CH ₂)5-		40 min	2j	90	110•
1 k	-p		45 min	2k	90	170
11	Ph	Me	1 h	21	84	1 40 9
1 m	-r		10 min	2m	51 ^s	120

^aThe reaction was carried out at room temperature. ^b Isolated crude yield based on compound 1. All crude compounds 2-4 and 6 were >93% pure (GLC and 300MHz ¹H-NMR). ^c Kugelrohr (4 Torr). ^d Z/E ratio: 9/1 (GLC). ^e Lit.^{4b}. ^f Lit.^{6a}: 149°C (3 Torr). ^g At 0°C. ^h LicN was slowly added during 30 min. ⁱ Z/E ratio: 65/35 (¹H-NMR). ^j Lit.⁷. ^k R_f 0.38 for the Z-isomer and 0.28 for the E-isomer, hexane/ethyl acetate: 1/1. ¹ Lit.^{4b}: 77-83°C (2 Torr). ^m Cis/trans ratio:1/1 (¹H-NMR). ⁿ T_r 10.30 and 10.39 min (see Experimental). ^o Lit.⁸. ^p 1,4-Cyclohexanedione monoethylene ketal. ^q Lit.^{2a}. ^r Norbornanone. ^s After column chromatography on silica gel (hexane/ethyl acetate).

2-cyclopentenone (11) gave the 1,4-addition product 4i as *cis/trans* mixture of diastereoisomers in *ca*. 1/1 molar ratio (Table 1), while the DEPC method gave the vinyl phosphate 5 under the similar reaction conditions⁵. When the reaction was carried out with acrolein (1a) the unsaturated cyano phosphate 3a was exclusively obtained as a Z/E mixture of diastereoisomers in 9/1 molar ratio (Table 1), this product arises from the isomerization of compound 2a. On the other hand, the reaction of acrolein (1a) with lithium cyanide and DEPC under the same reaction conditions gave a mixture 3/1 of compounds 2a and 3a.

The treatment of 3-indolecarbaldehyde (1f) as above at 0°C afforded a mixture of (Z)- and (E)-3-cyanomethyleneindolines 6f in 72% yield, in 65 and 35% ratio respectively. The same result was obtained with the DEPC method, product (E)-6f being the major isomer⁷. Compounds 6f were formed by [3,3]-sigmatropic rearrangement of the intermediate cyanophosphate 7⁷. In the case of norbornanone (1m) only one diastereoisomer (2m), presumably with the cyano group in the *exo* position, was obtained.

The procedure of cyanophosphorylation described here is a good method for the synthesis of synthetic useful cyano phosphates and allows the use of diethyl chlorophosphate instead of diethyl cyanophosphate in stoichiometric amounts.

Experimental Part

General.- IR spectra were obtained as films in a Pye Unicam SP3-200 spectrophotometer as neat liquids. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AC-300 spectrometer with SiMe₄ as internal standard or H₃PO₄ 85% and using CDCl₃ as solvent. ¹³C-NMR assignments were made on the basis of DEPT experiments. MS spectra were measured in a Hewlett-Packard 5988A by GLC injection (EI, 70eV). Elemental analyses were performed by the Microanalyses Service of the University of Alicante. Chromatographic analysis (GLC) were determined with a Hewlett-Packard HP-5890 instrument equipped with a 25 m WCOT capillary column (0.22 mm diam., 0.2 µm film thickness OV-101 stationary phase) using nitrogen (2 ml/min) as the carrier gas, T_{injector}=270°C, T_{column}=100°C, and 100-270 (10°C/min). Thin layer chromatography (TLC) was carried out on Schleicher &Schuell F1500/LS 254 plates coated with a 0.2 mm layer of silica gel, using a mixture of hexane/ethyl acetate as eluant, and revealed, in general, with iodine. Column chromatography was performed using silica gel 60 of 70-270 mesh and hexane/ethyl acetate as eluant. All starting materials were commercially available (Aldrich, Fluka) of the best grade and were used without further purification. THF was dried with LiAlH₄ under argon atmosphere.

Preparation of Compounds 2-6. General Procedure.- To a solution of carbonyl compound 1 (0.5 mmol) and diethyl chlorophosphate (0.09 ml, 0.6 mmol) in dry THF (4 ml) was added a 0.5 M solution of lithium cyanide⁹ (1.5 ml, 0.75 mmol) in DMF and the mixture was stirred at room temperature (see Table 1). The reaction mixture was quenched with water and extracted with a mixture of hexane and ethyl acetate (1/1). The organic layer was washed three times with brine, dried over anhydrous sodium sulfate and evaporated (15 Torr) to yield crude pure cyano phosphates 2-4 and 6, which were purified by distillation or column chromatography. Yields and bp values are given in Table 1, R_f values (hexane/ethyl acetate: 2/1), spectral, and analytical data for new compounds follow.

(Z/E)-2-(Diethylphosphonooxy)-2-butenenitrile (**3a**): R_f 0.48; v_{max} 3060, 1630 (CH=C), 2225 (CN), 1280 (P=O), and 1020 cm⁻¹ (P-O); δ_H 1.41 (t, J = 7.0Hz, 6H, 2xCH₃CH₂), 1.89 (Z), 1.96(E) (2dd, J = 7.5, 2.5Hz, 3H, CH₃CH), 4.26 (m, 4H, 2xCH₂), 6.11 (qd, J = 7.0, 1.0Hz, 0.9H, CH), 6.38 (qd, J = 7.5, 2.5Hz, 0.1H, CH); δ_C 11.64(Z), 13.27(E) (d, J = 1.0Hz, CH₃CH), 15.77 (d, J = 6.5Hz, 2xCH₃CH₂), 65.12 (d, J = 6.5Hz, 2xCH₂), 112.21(E), 113.84 (Z) (2d, J = 1.5, 2.5Hz, respectively, COP), 121.27 (Z), 122.00 (E) (2d, J = 9.0 and 10.0, respectively, CN), 130.96 (E), and 131.52 (Z) (2d, J = 5.5 and 6.9, respectively, CH); δ_P -5.5 (E-isomer) and -5.7 (Z-isomer); m/z 219 (M^+ , 4%), 163 (64), 109 (40), 108 (20), 99 (43), 91 (18), 82 (35), 81 (100), 69 (10), 66 (21), 65 (20), 56 (61), 55 (41), 54 (23), 47 (10), 45 (11), and 43 (10). Anal. Calcd. for C₈H₁₄NO₄P: C, 43.84; H, 6.44; N, 6.39. Found: C, 44.03; H, 6.74; N, 6.66.

2-(Diethylphosphonooxy)-3-pentenenitrile (2b): R_f 0.49; v_{max} 1270 (P=O) and 1100-940 cm⁻¹ (P-O) ^{4b}; δ_H 1.35, 1.38 (2t, J = 7.0Hz, 6H, 2xCH₃CH₂), 1.82 (d, J = 6.5Hz, 3H, CH₃CH), 4.16 (m, 4H, 2xCH₂O), 5.46 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H, CHO), 5.64 (ddq, J = 15.0, 7.0, 2.0Hz, 1H, CHCHO), and 6.17 (ddq, J = 15, 6.5, 2.0Hz, 1H, CHCH₃)^{4b}; δ_C 15.71 (d, J = 7.0Hz, 2xCH₃), 17.28 (CH₃CH), 64.35, 64.42 (2d, J = 6.0Hz, 2xCH₂O), 64.72 (d, J = 5.0Hz, CHCN), 115.47 (d, J = 6.0Hz, CN), 122.23 (CHCHO), and 135.24 (CHCH₃); m/z 234 (M++1, 0.2%), 233 (M+, 1.2), 177 (29), 127 (20), 125 (11), 99 (100), 81 (29), 80 (15), 79 (11), and 53 (15).

2-(Diethylphosphonooxy)-3,3-dimethylbutanenitrile (2c): R_f 0.56; v_{max} 1270 (P=O), 1020, and 980 cm⁻¹ (P-O); δ_H 1.12 (s, 9H, 3xCH₃C), 1.38, 1.39 (2t, J= 7.0Hz, 2xCH₃CH₂), 4.20 (m, 4H, 2xCH₂), and 4.65 (d, J= 8.5Hz, CH); δ_C 15.73, 15.76 (2d, J= 6.5Hz, 2xCH₃CH₂), 24.59 (3xCH₃C), 35.43 (d, J= 6.0Hz, CCH), 64.43, 64.44 (2d, J= 6.0Hz, 2xCH₂), 73.19 (d, J= 7.0Hz, CH), and 115.82 (d, J= 2.0Hz, CN); δ_P -1.4; m/z 249 (M+, 0.1%), 209 (13), 193 (46), 178 (15), 165 (28), 155 (32), 137 (100), 127 (62), 125 (22), 99 (78), 82 (24), 81 (43), 57 (23), 53 (12), and 41 (24).

2-(Diethylphosphonooxy)-2-phenylethanenitrile (2d): R_f 0.49; v_{max} 1265 (P=O), 1030, and 970 cm⁻¹ (P-O)^{6a}; δ_H 1.22, 1.38 (2t, J=7.0Hz, 6H, 2xCH₃), 4.01, 4.17 (2m, 4H, 2xCH₂O), 6.08 (d, J= 9.0Hz, CHO), 7.45, and 7.57 (2m, 5H, Ph)^{6a}; δ_C 15.76, 15.72 (2d, J= 7.0Hz, 2xCH₃), 64.41, 64.59 (2d, J= 6.0Hz, 2xCH₂), 66.25 (d, J= 4.5Hz, CHO), 115.93 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), and 132.27 (d, J= 6.0Hz, CN), 127.25, 129.00, 130.31 (3xCH-Ph), 130

5.5Hz, C_i-Ph); *m/z* 270 (*M*++1, 0.2%), 269 (*M*+, 17), 213 (57), 125 (10), 117 (10), 116 (100), 115 (60), 105 (45), 99 (12), 89 (44), 81 (23), 77 (19), and 63 (14).

2-(*Diethylphosphonooxy*)-3-phenylpropanenitrile (2e): R_f 0.44; v_{max} 1270 (P=O), 1030, and 970 cm⁻¹ (P-O); δ_H 1.24-1.33 (m, 6H, 2xCH₃), 3.22 (d, J= 7.0Hz, 2H, CH₂C), 3.94-4.16 (2m, 4H, 2xCH₂O), 5.16 (dd, J= 15.0 y 7.0Hz, 1H, CHO), 7.32 (m, 5H, Ph); δ_C 15.70 (d, J= 6.5Hz, 2xCH₃), 40.15 (d, J= 6.0Hz, CH₂C), 64.40, 64.48 (2d, J= 6.0Hz, 2xCH₂O), 65.19 (d, J= 6.0Hz, CHO), 116.27 (d, J= 4.0Hz, CN), 127.70, 128.58, 129.46 (3xCH-Ph), and 132.80 (C_i-Ph); m/z 283 (M+, 0.2%), 130 (15), 129 (100), and 91 (35).

2-(Diethylphosphonooxy)-2-methyl-3-butenenitrile (2g): R_f 0.44; v_{max} 3080, 1660 (CH=C), 2240 (CN), 1265 (P=O), and 1080-950 cm⁻¹ (P-O) ^{4b}; δ_H 1.36, 1.37 (2t, J= 7.0Hz, 6H, 2xCH₃CH₂), 1.90 (s, 3H, CH₃CO), 4.17 (m, 4H, 2xCH₂O), 5.47 (d, J= 10.5Hz, 1H, CH₂=C), 5.74 (d, J= 17.0Hz, 1H, CH₂=C), and 6.06 (dd, J= 17.0, 10.5Hz, 1H, CH)^{4b}; δ_C 15.70, 17.79 (2d, J= 7.0Hz, 2xCH₃CH₂), 27.73 (d, J= 5.0Hz, CH₃CO), 64.24, 64.32 (2d, J= 6.0Hz, 2xCH₂O), 74.15 (d, J= 7.0Hz, CO), 117.01 (d, J= 4.0Hz, CN), 118.62 (CH₂=C), and 134.57 (d, J= 4.5Hz, CH); m/z 233 (M+, 0.8%), 177 (21), 127 (42), 125 (19), 109 (20), 99 (100), 97 (40), 82 (13), 81 (41), 80 (28), 79 (16), and 53 (20).

2-Ethyl-2-(diethylphosphonooxy)butanenitrile (2h): R_f 0.44; v_{max} 1270 (P=O) and 1020 cm⁻¹ (P-O); δ_H 1.12 (t, J = 7.5Hz, 6H, $2xCH_3CH_2C$), 1.37 (t, J = 7.0Hz, $2xCH_3CH_2O$), 2.08 (m, 4H, $2xCH_2C$), and 4.18 (m, 4H, $2xCH_2O$); δ_C 8.04 ($2xCH_3CH_2C$), 15.82 (d, J = 6.5Hz, $2xCH_3CH_2O$), 31.29 (d, J = 4.0Hz, $2xCH_2C$), 64.22 (d, J = 6.0Hz, $2xCH_2O$), 79.80 (d, J = 8.0Hz, CO), and 117.76 (d, J = 5.5Hz, CN); δ_P -5.4; m/z 234 (M+15, 0.7%), 164 (15), 155 (41), 127 (63), 109 (13), 99 (100), 81 (26), and 57 (13). Anal. Calcd. for C₁₀ H₂₀NO₄P: C, 48.19; H, 8.09; N, 5.60. Found: C, 48.60; H, 7.80; N, 5.75.

cis/trans-*I*-(*Diethylphosphonooxy*)-*I*,3-cyclopentanedicarbonitrile (41): v_{max} 2240 (CN), 1270 (P=O), and 1000 cm⁻¹ (P-O); δ_{H} 1.38 (t, J= 7.0Hz, 6H, 2xCH₃), 2.63 (m, 6H, 3xCH₂C), 3.28 (m, 1H, CH), and 4.21 (m, 4H, 2xCH₂O); δ_{C} 15.77 (d, J= 6.5Hz, 2xCH₃), 25.27, 25.39 (CH), 27.74, 28.20 (CH₂CH₂CH), 38.83, 39.15 (2d, J= 5.0 and 4.5Hz, respectively, OCCH₂CH₂), 43.48, 43.55 (2d, J= 5.5 and 5.0Hz, respectively, OCCH₂CH), 64.60, 64.76 (2d, J= 5.5 and 6.0, respectively, CH₂O), 104.25, 104.32 (CO), 116.85 (d, J= 1.5Hz, OCCN), 117.14 (OCCN), 120.42 and 120.43 (CHCN); δ_{P} -4.7 and -4.9; m/z 271 (*M*+-1, 0.6%), 127 (39), 125 (12), 99 (100), 92 (15), 91 (82), 82 (15), 81 (45), 65 (19), 64 (15), and 63 (12). Anal. Calcd. for C₁₁H₁₇N₂O₄P: C, 48.53; H, 6.29; N, 10.29. Found: C, 48.09; H, 6.57; N, 10.41.

I-(*Diethylphosphonooxy*)*cyclohexanecarbonitrile* (2**j**)⁸: R_f 0.47; v_{max} 1270 (P=O), 1030, and 1000 cm⁻¹ (P-O); δ_H 1.37, 1.38 (2t, J= 7.0Hz, 6H, 2xCH₃), 1.64, 1.84, 1.97, 2.30 (4m, 10H, 5xCH₂C), and 4.18 (m, 4H, 2xCH₂O); δ_C 15.79 (d, J= 7.0Hz, 2xCH₃), 22.30, 23.89 (3xCH₂), 36.81 (d, J= 5.0Hz, 2x CH₂CO), 64.18 (d, J= 6.0Hz, 2xCH₂O), 75.59 (d, J= 8.0 Hz, CO), and 118.34 (d, J= 3.5Hz, CN); m/z 246 (M+-15, 0.2%), 155 (43), 127 (58), 94 (100), 81 (31), and 41 (17).

1-(Diethylphosphonooxy)-4-oxocyclohexanecarbonitrile Ethylene Ketal (2k): R_f 0.31; v_{max} 1270 (P=O) and 1000 cm⁻¹ (P-O); δ_H 1.38 (t, J= 7.0Hz, 2xCH₃), 1.83 (m, 4H, 2xCH₂CO), 2.33 (m, 4H, 2xCH₂CCN), 3.96 (s, 4H, OCH₂CH₂O), and 4.18 (m, 4H, CH₂CH₃); δ_C 15.87 (d, J= 7.0Hz, 2xCH₃), 30.37 (2xCH₂CO), 34.38 (d, J= 5.0Hz, 2xCH₂CCN), 64.38, 64.42 (OCH₂CH₂O), 64.41 (d, J= 5.5Hz, 2xCH₂OP), 73.48 (d, J= 8.0Hz, COP), 106.16 (COCH₂), and 118.18 (d, J= 2.5Hz, CN); δ_P -4.9; m/z 291 (M+-28, 1.1%), 163 (38),

99 (65), 86 (100), and 81 (11).

2-(Diethylphosphonooxy)-2-phenylpropanenitrile (21)^{2a}: R_f 0.41; v_{max} 2220 (CN), 1270 (P=O), 1030, and 980 cm⁻¹ (P-O); δ_H 1.28, 1.32 (2t, J= 7.0Hz, 6H, 2xCH₃CH₂), 2.14 (s, 3H, CH₃CO), 4.09 (m, 4H, 2xCH₂), 7.46, and 7.64 (2m, 5H, Ph); δ_C 15.70, 15.72 (2d, J= 7.0Hz, 2x CH₃CH₂), 30.13 (d, J= 5.0Hz, CH₃CO), 64.22, 64.31 (2d, J= 6.5Hz, 2xCH₂), 75.44 (d, J= 8.0Hz, CO), 118.15 (CN), 124.91, 128.65, 129.48 (3xCH-Ph), and 137.73 (d, J= 5.5Hz, C_i-Ph); m/z 284 (M++1, 1%), 283 (M+, 13), 155 (15), 147 (70), 131 (12), 130 (56), 129 (100), 128 (15), 127 (32), 125 (14), 105 (19), 103 (52), 102 (25), 99 (58), 91 (10), 82 (10), 81 (35), 78 (14), 77 (48), and 51 (15).

2-(Diethylphophonooxy)bicyclo[2.2.1]heptane-2-carbonitrile (2m): R_f 0.58; v_{max} 2225 (CN), 1280 (P=O), and 1025 cm⁻¹ (P-O); δ_H 1.38 (m, 6H, 2xCH₃), 1.57, 1.87, 2.36 (3m, 7H, CH₂CH₂ and CHCH₂CO), 2.39 (d, J= 3.0Hz, 2H, CH₂CO), 2.89 (m, CHCO), and 4.20 (m, 4H, 2xCH₂O); δ_C 15.79 (d, J= 7.0Hz, 2x CH₃), 20.75, 27.93, 37.20 (CH₂CH₂ and CHCH₂CH), 39.09 (CHCH₂CO), 44.36 (d, J= 4.5Hz, CH₂CO), 48.15 (d, J= 5.0Hz, CHCO), 64.20, 64.27 (2d, J= 5,5Hz, 2xCH₂O), 77.99 (d, J= 9.0Hz, COP), and 119.95 (CN); δ_P -4.0; *m*/z 273 (*M*+, 0.3%), 206 (14), 155 (100), 150 (21), 127 (37), 99 (54), 91 (19), 81 (32), 67 (16), 65 (12), and 41 (13). Anal. Calcd. for C₁₂H₂₀NO₄P: C, 52.74; H, 7.38; N, 5.13. Found: C, 52.32; H, 7.29; N, 5.12.

Acknowledgements

We thank Lilly S. A. (Spain) for financial support and Dr. F. J. Fañanás (University of Oviedo) for the ³¹P NMR spectra.

References and Notes

- 1. Kurihara, T.; Harusawa, S.; Yoneda, R. J. Synth. Org. Chem. Jpn. 1988, 46, 1164.
- (a) Yoneda, R.; Osaki, H.; Harusawa, S.; Kurihara, T. J. Chem. Soc., Perkin Trans. 1 1990, 607.
 (b) Yoneda, R.; Harusawa, S.; Kurihara, T. J. Org. Chem. 1991, 56, 1827.
- (a) Harusawa, S.; Yoneda, R.; Kurihara, T.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1984, 25, 427.
 (b) Yoneda, R.; Harusawa, S.; Kurihara, T. J. Chem. Soc., Perkin Trans 1 1988, 3163.
- 4. (a) Kurihara, T.; Harusawa, S.; Hirai, J.; Yoneda, R. J. Chem. Soc., Perkin Trans. 1 1987, 1771.
 (b) Kurihara, T.; Miki, M.; Santo, K.; Harusawa, S.; Yoneda, R. Chem. Pharm. Bull. 1986, 34, 4620.
- 5. Kurihara, T.; Miki, M.; Yoneda, R.; Harusawa, S. Chem. Pharm. Bull. 1986, 34, 2747.
- 6. (a) Kurihara, T.; Santo, K.; Harusawa, S.; Yoneda, R. Chem. Pharm. Bull. 1987, 35, 4777.
 (b) Yoneda, R.; Santo, K.; Harusawa, S.; Kurihara, T. Synth. Commun. 1987, 17, 921.
- 7. Kurihara, T.; Hanakawa, M.; Harusawa, S.; Yoneda, R. Chem. Pharm. Bull. 1986, 34, 4545.
- 8. Harusawa, S.; Yoneda, R.; Kurihara, T.; Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1983, 31, 2932.
- 9. Supplied by Aldrich.